
©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.3.1 Invoking Base-Class Functions from

Derived-Class Objects (cont.)

Aiming a Base-Class Pointer at a Base-Class Object

• Line 36 assigns the address of base-class object
commissionEmployee to base-class pointer
commissionEmployeePtr, which line 39 uses to
invoke member function print on that
CommissionEmployee object.
– This invokes the version of print defined in base class
CommissionEmployee.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.3.1 Invoking Base-Class Functions from

Derived-Class Objects (cont.)

Aiming a Derived-Class Pointer at a Derived-Class Object

• Line 42 assigns the address of derived-class object
basePlusCommissionEmployee to derived-class
pointer basePlusCommissionEmployee-Ptr, which
line 46 uses to invoke member function print on that
BasePlusCommissionEmployee object.
– This invokes the version of print defined in derived class
BasePlusCommissionEmployee.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.3.1 Invoking Base-Class Functions from

Derived-Class Objects (cont.)
Aiming a Base-Class Pointer at a Derived-Class Object

• Line 49 assigns the address of derived-class object base-
PlusCommissionEmployee to base-class pointer
commissionEmployeePtr, which line 53 uses to invoke
member function print.
– This “crossover” is allowed because an object of a derived class is an

object of its base class.

– Note that despite the fact that the base class CommissionEmployee
pointer points to a derived class BasePlusCommissionEmployee
object, the base class CommissionEmployee’s print member
function is invoked (rather than
BasePlusCommissionEmployee’s print function).

• The output of each print member-function invocation in this
program reveals that the invoked functionality depends on the
type of the pointer (or reference) used to invoke the function, not
the type of the object for which the member function is called.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.3.2 Aiming Derived-Class Pointers at

Base-Class Objects

• In Fig. 12.2, we aim a derived-class pointer at

a base-class object.

• Line 14 attempts to assign the address of base-

class object commissionEmployee to

derived-class pointer

basePlusCommissionEmployeePtr,

but the C++ compiler generates an error.

• The compiler prevents this assignment,

because a CommissionEmployee is not a

BasePlusCommissionEmployee. ©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.3.3 Derived-Class Member-Function

Calls via Base-Class Pointers

• Off a base-class pointer, the compiler allows us

to invoke only base-class member functions.

• If a base-class pointer is aimed at a derived-

class object, and an attempt is made to access a

derived-class-only member function, a

compilation error will occur.

• Figure 12.3 shows the consequences of

attempting to invoke a derived-class member

function off a base-class pointer.
©1992-2014 by Pearson Education, Inc. All

Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.3.3 Derived-Class Member-Function

Calls via Base-Class Pointers (cont.)

Downcasting

• The compiler will allow access to derived-class-
only members from a base-class pointer that is
aimed at a derived-class object if we explicitly
cast the base-class pointer to a derived-class
pointer—known as downcasting.

• Downcasting allows a derived-class-specific
operation on a derived-class object pointed to by a
base-class pointer.

• After a downcast, the program can invoke
derived-class functions that are not in the base
class.

• Section 12.8 demonstrates how to safely use
downcasting.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.3.4 Virtual Functions and Virtual

Destructors

Why virtual Functions Are Useful

• Consider why virtual functions are useful: Suppose that
shape classes such as Circle, Triangle, Rectangle
and Square are all derived from base class Shape.
– Each of these classes might be endowed with the ability to draw

itself via a member function draw, but the function for each shape
is quite different.

– In a program that draws a set of shapes, it would be useful to be
able to treat all the shapes generally as objects of the base class
Shape.

– To draw any shape, we could simply use a base-class Shape
pointer to invoke function draw and let the program determine
dynamically (i.e., at runtime) which derived-class draw function to
use, based on the type of the object to which the base-class Shape
pointer points at any given time.

– This is polymorphic behavior.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.3.4 Virtual Functions and Virtual

Destructors (cont.)

Declaring virtual Functions

• To enable this behavior, we declare draw in the base class
as a virtual function, and we override draw in each of
the derived classes to draw the appropriate shape.

• From an implementation perspective, overriding a function
is no different than redefining one.
– An overridden function in a derived class has the same signature

and return type (i.e., prototype) as the function it overrides in its
base class.

• If we declare the base-class function as virtual, we can
override that function to enable polymorphic behavior.

• We declare a virtual function by preceding the
function’s prototype with the key-word virtual in the
base class.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

