base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Calling print with base-class pointer to derived-class object
invokes base-class print function on that derived-class object:

commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00

commission rate: 0O B‘L”// Notice that the base salary is not displayed

Fig. 12.1 | Assigning addresses of base-class and derived-class objects to base-
class and derived-class pointers. (Part 5 of 5.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Invoking Base-Class Functions from
Derived-Class Objects (cont.)

Aiming a Base-Class Pointer at a Base-Class Object

* Line 36 assigns the address of base-class object
commissionEmp]loyee to base-class pointer
commissionEmployeePtr, which line 39 uses to
invoke member function print on that
CommissionEmployee object.

— This invokes the version of print defined in base class
CommissionEmployee.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Invoking Base-Class Functions from
Derived-Class Objects (cont.)

Aiming a Derived-Class Pointer at a Derived-Class Object

* Line 42 assigns the address of derived-class object
basePlusCommissionEmployee to derived-class
pointer basePlusCommissionEmployee-Ptr, which
line 46 uses to invoke member function print on that
BasePlusCommissionEmployee object.

— This invokes the version of print defined in derived class
BasePlusCommissionEmployee.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Invoking Base-Class Functions from

Derived-Class Objects (cont.)
Aiming a Base-Class Pointer at a Derived-Class Object

* Line 49 assigns the address of derived-class object base-
PlusCommissionEmployee to base-class pointer
commissionEmployeePtr, which line 53 uses to invoke
member function print.

— This “crossover” is allowed because an object of a derived class /s an
object of its base class.

— Note that despite the fact that the base class CommissionEmployee
pointer points to a derived class BasePlusCommissionEmployee
object, the base class CommissionEmployee’s print member
function is invoked (rather than
BasePlusCommissionEmployee’s print function).

« The output of each print member-function invocation in this
program reveals that the invoked functionality depends on the

type of the pointer (or reference) used to invoke the function, not
the type of the obfect for which the member function Is called.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

* In Fig. 12.2, we aim a derived-class pointer at
a base-class object.

 Line 14 attempts to assign the address of base-
class object commissionEmployee to
derived-class pointer
basePlusCommissionEmployeePtr,
but the C++ compiler generates an error.

» The compiler prevents this assignment,
because a CommissionEmployee is nota
BasePlusCommtssionEmp loyee.

1 // Fig. 12.2: figl2_02.cpp

2 // Aiming a derived-class pointer at a base-class object.

3 #include

4 #include

5

6 1int main()

7T {

8 CommissionEmployee commissionEmployee(

9 ? ’ H]);

10 BasePlusCommissionEmployee *basePlusCommissionEmployeePtr = nullptr;
11

12 // aim derived-class pointer at base-class object

13 // Error: a CommissionEmployee is not a BasePlusCommissionEmployee
14 basePlusCommissionEmployeePtr = &commissionEmployee;

I5 } // end main

Microsoft Visual C++ compiler error message:

C:\cpphtp8_examples\chl12\Figl2_02\figl2_02.cpp(14): error (C2440: '='
cannot convert from 'CommissionEmployee *' to 'BasePlusCommissionEmployee *
Cast from base to derived requires dynamic_cast or static_cast

Fig. 12.2 | Aiming a derived-class pointer at a base-class object.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

» Off a base-class pointer, the compiler allows us
to invoke only base-class member functions.

* |If a base-class pointer is aimed at a derived-
class object, and an attempt is made to access a
aerived-class-only member function, a
compilation error will occur.

» Figure 12.3 shows the consequences of
attempting to invoke a derived-class member
function off a base-class pointer.

I // Fig. 12.3: figl1l2_03.cpp

2 // Attempting to invoke derived-class-only member functions

3 // via a base-class pointer.

4 #include <string>

5 #include

6 #include

7 using namespace std;

8

9 int main(Q)

10 {

11 CommissionEmployee *commissionEmployeePtr = nullptr; // base class ptr
12 BasePlusCommissionEmployee basePlusCommissionEmployee(

13 , , , , ,); // derived class
14

15 // aim base-class pointer at derived-class object (allowed)

16 commissionEmployeePtr = &basePlusCommissionEmployee;

17

Fig. 12.3 | Attempting to invoke derived-class-only functions via a base-class
pointer. (Part | of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

18
19
20
21
22
23
24
25
26
27
28
29
30

// invoke base-class member functions on derived-class

// object through base-class pointer (allowed)

string firstName = commissionEmployeePtr->getFirstName();

string lastName = commissionEmployeePtr->getlLastName();

string ssn = commissionEmployeePtr->getSocialSecurityNumber();
double grossSales = commissionEmployeePtr->getGrossSales();

double commissionRate = commissionEmployeePtr->getCommissionRate();

// attempt to invoke derived-class-only member functions

// on derived-class object through base-class pointer (disallowed)
double baseSalary = commissionEmployeePtr->getBaseSalary();
commissionEmployeePtr->setBaseSalary();

} // end main

GNU C++ compiler error messages:

fi912_03.cpp:28:47: error: ‘class CommissionEmployee’ has no member named

‘getBaseSalary’

fig1l2_03.cpp:29:27: error: ‘class CommissionEmployee’ has no member named

‘setBaseSalary’

Fig. 12.3 | Attempting to invoke derived-class-only functions via a base-class
pointer. (Part 2 of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Derived-Class Member-Function
Calls via Base-Class Pointers (cont.)

Downcasting

* The compiler will allow access to derived-class-
only members from a base-class pointer that is
almed at a derived-class object 7/fwe explicitly
cast the base-class pointer to a derived-class
pointer—known as downcasting.

« Downcasting allows a derived-class-specific
operation on a derived-class object pointed to by a
base-class pointer.

 After a downcast, the program can invoke
derived-class functions that are not in the base

©1992-2014 by Pearson Education, Inc. All

C I aSS . Rights Reserved.

Software Engineering Observation 12.3

[f the address of a derived-class object has been assigned
to a pointer of one of its direct or indirect base classes,
it’s acceptable to cast that base-class pointer back to a
pointer of the derived-class type. In fact, this must be
done to call derived-class member functions that do not
appear in the base class.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Why virtual Functions Are Useful

« Consider why virtual functions are useful: Suppose that
shape classes suchas Circle, Triangle, Rectangle
and Square are all derived from base class Shape.

— Each of these classes might be endowed with the ability to draw
/tselfvia a member function draw, but the function for each shape
IS quite different.

— In a program that draws a set of shapes, it would be useful to be
able to treat all the shapes generally as objects of the base class
Shape.

— To draw any shape, we could simply use a base-class Shape
pointer to invoke function draw and let the program determine
dynamically (i.e., at runtime) which derived-class draw function to
use, based on the type of the object to which the base-class Shape
pointer points at any given time.

— This is polymorphic behavior.

Software Engineering Observation 12.4

With virtual functions, the type of the object, not the
type of the handle used to invoke the member function,
determines which version of a virtual function to
invoke.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Declaring virtual Functions

« To enable this behavior, we declare draw in the base class
as a virtual function, and we override draw in each of
the derived classes to draw the appropriate shape.

* From an implementation perspective, overriding a function
IS no different than redefining one.

— An overridden function in a derived class has the same signature
and return type (i.e., prototype) as the function it overrides in its

base class.
» If we declare the base-class function as virtual, we can
override that function to enable polymorphic behavior.

* We declare a virtual function by preceding the

function’s prototype with the key-word virtual in the
base class.

Software Engineering Observation 12.5

Once a function is declared virtual, it remains

virtual all the way down the inheritance hierarchy
from that point, even if that function is not explicitly
declared virtual when a derived class overrides it.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

